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Part Three



  

Outline for Today

● Stacks
● Pancakes meets parsing!

● Queues
● Playing some music!



  

Stack



  

Car 1Car 2Car 3

This car 
can’t leave…

… until 
these two 

do.

Thanks to Nick Troccoli for this example!



  

Car 1Car 2Car 3 Car 4Car 5

Any new car 
precedes all the 

old cars. Only this 
car can leave.

Thanks to Nick Troccoli for this example!
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Thanks to Nick Troccoli for this example!
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● Only the topmost element of a 
Stack can be accessed.

● Do you see why we call it the 
call stack and talk about stack 
frames?



  

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');
 

while (!s1.isEmpty()) {
  s2.push(s1.pop());
}
 

while (!s2.isEmpty()) {
  cout << s2.pop() << endl;
}

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23
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Stack

● Technically speaking, anything you can do with a 
Stack you can also do with a Vector.

● So why do we have the Stack type as well?
● Clarity: Many problems can be modeled elegantly 

using a stack. Representing those stacks in code 
with a Stack makes the code easier to understand.

● Error-Prevention: The Stack has fewer operations 
than a Vector. If you’re trying to model a stack, this 
automatically eliminates a large class of errors.

● Efficiency: Stacks can be slightly faster than 
Vectors because they don’t need to support as 
many operations. (More on that later in the 
quarter.)
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Our Algorithm

● For each character:
● If it’s an open parenthesis or brace, push it 

onto the stack.
● If it’s a close parenthesis or brace:

– If the stack is empty, report an error.
– If the character doesn’t pair with the character 

on top of the stack, report an error.

● At the end, return whether the stack is 
empty (nothing was left unmatched).



  

More Stack Applications

● Stacks show up all the time in parsing, recovering the 
structure in a piece of text.
● Often used in natural language processing; take CS224N for 

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures 

appearing in natural language are perfectly modeled by 
operations on stacks; come talk to me after class if you’re 
curious!

● They’re also used as building blocks in larger algorithms 
for doing things like
● making sure a city’s road networks are navigable (finding 

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem – stay tuned!



  

Time-Out for Announcements!



  

Assignment 2

● Assignment 1 was due today a 1:00PM.
● Need more time? Use one late day to extend the 

deadline by 24 hours or two to extend it by 48 hours.
● Assignment 2 (Fun With Collections) goes out 

today. It’s due next Friday at 1:00PM.
● Use collections to learn what language a text is written 

in – and expand your mind about the world of human 
language!

● Explore the impact of sea level rise on coastal regions!
● Have questions?

● Stop by the LaIR! Or ask on EdStem! Or email your 
section leader!



  

Assignment 2

● This assignment contains a series of short-answer 
ethics questions designed to get you thinking about 
the social impact of computing.

● It’s critical to think about the effect your software has 
on others, especially given the scale of modern 
software systems.

● These will form a part of your grade on the 
assignment separately from your functionality and 
style scores.

● If you’d like to discuss ethics in technology more, feel 
free to stop by or call into my “Chat About Anything” 
hours today from 3PM – 5PM in Durand 317.



  

Discussion Sections

● Discussion sections have started! You 
should have received an email with your 
section time and section leader’s name.

● Don’t have a section? You can sign up for 
any open section by visiting

https://cs198.stanford.edu/

logging in via “CS106 Sections Login,” 
and picking a section of your choice.

https://cs198.stanford.edu/


  



  

Upcoming Career Fair
The Computer Forum Career Fair will be held Wednesday, January 25, in-person. Sign-ups 
are now open! Stanford students only; student IDs required at check-in.
 

Date: Wednesday, January 25
Time:  11:00am - 4:00pm
Location: Arrillaga Center for Sports and Recreation, Basketball Courts [Enter through the 
doors that lead directly to the courts, not through the main ACSR entrance]
 

Register via Handshake. Career Fair Plus link.
 

We will do in-person scheduled only sessions for the first three hours (11am - 2pm) and open 
to all for the last two hours (2pm - 4pm). There is an enforced 10 minute buffer between 
each session you are able to sign up for to allow for you to find the company/recruiter.
 

Candidate Checklist, How to Book Meetings.
 

Best Practices: 
 

    • Be courteous of employers and other students. Only sign up for what you will attend.
 

    • Only sign up for one session per company
 

    • Continuously check back to see newly added schedules.
 

Stanford Computer Forum policies regarding no-shows: if you do not show up for a session 
you signed up for, your participation in future Computer Forum events may be revoked. By 
signing up and not showing up, you are taking away a spot from another student.

https://app.joinhandshake.com/edu/events/1213297
https://cfplus.page.link/eahe
https://help.careerfairplus.com/en/articles/4037918-candidate-checklist
https://help.careerfairplus.com/en/articles/4477545-candidates-booking-meetings-on-the-web
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Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.
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Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
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● No other objects in the queue are visible.
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Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');
 

while (!q1.isEmpty()) {
  q2.enqueue(q1.dequeue());
}
 

while (!q2.isEmpty()) {
  cout << q2.dequeue() << endl;
}

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23
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An Application: Looper



  

Loopers

● A looper is a device that records sound 
or music, then plays it back over and 
over again (in a loop).

● These things are way too much fun, 
especially if you’re not a very good 
musician. 😃

● Let’s make a simple looper using a Queue.



  

Building our Looper

● Our looper will read 
data files like the one 
shown to the left.

● Each line consists of 
the name of a sound 
file to play, along with 
how many milliseconds 
to play that sound for.

● We’ll store each line 
using the SoundClip 
type, which is defined 
in our C++ file.

G2.wav 690
G2.wav 230
Bb2.wav 230
G2.wav 460
G2.wav 460
G2.wav 460
G2.wav 230
Bb2.wav 230
G2.wav 230
F2.wav 460



  

Building our Looper



  

Building our Looper

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.dequeue();
   playSound(toPlay.filename, toPlay.length);

   loop.enqueue(toPlay);
 }
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Enjoying Our Looper

Feeling musical? Want to 
contribute a loop for the 
next iteration of CS106B? 

Send me your .loop file and 
we’ll add it to our collection!
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Changing our Looper

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.dequeue();
   playSound(toPlay.filename, toPlay.length);

   loop.enqueue(toPlay);
 }



  

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.pop();
   playSound(toPlay.filename, toPlay.length);

   loop.push(toPlay);
 }



  

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.pop();
   playSound(toPlay.filename, toPlay.length);

   loop.push(toPlay);
 }

What are you going to hear when we
use this version of the looper?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23


  

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.pop();
   playSound(toPlay.filename, toPlay.length);

   loop.push(toPlay);
 }
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Changing our Looper
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Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.pop();
   playSound(toPlay.filename, toPlay.length);

   loop.push(toPlay);
 }
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Your Action Items

● Read Chapter 5.2 and 5.3.
● These sections cover more about the Stack 

and Queue type, and they’re great resources 
to check out.

● Start Assignment 2.
● To follow our suggested timetable, start 

working on Rosetta Stone and make good 
progress on it by Monday. 



  

Next Time

● Thinking Recursively
● More elaborate recursive functions.

● Recursive Graphics
● Drawing intricate and beautiful figures with 

very little code.
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