

Collections
Part Three

Outline for Today

● Stacks
● Pancakes meets parsing!

● Queues
● Playing some music!

Stack

Car 1Car 2Car 3

This car
can’t leave…

… until
these two

do.

Thanks to Nick Troccoli for this example!

Car 1Car 2Car 3 Car 4Car 5

Any new car
precedes all the

old cars. Only this
car can leave.

Thanks to Nick Troccoli for this example!

Car 1Car 4Car 5

Thanks to Nick Troccoli for this example!

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

137

42

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

42

137

271

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

42

137

0

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

0

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

0

42

137
● Only the topmost element of a
Stack can be accessed.

● Do you see why we call it the
call stack and talk about stack
frames?

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b' 'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b' 'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b' 'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2

'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a'

'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b'

'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b' 'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b' 'c'

Stack

What does this code print?

Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b' 'c'

Stack

● Technically speaking, anything you can do with a
Stack you can also do with a Vector.

● So why do we have the Stack type as well?
● Clarity: Many problems can be modeled elegantly

using a stack. Representing those stacks in code
with a Stack makes the code easier to understand.

● Error-Prevention: The Stack has fewer operations
than a Vector. If you’re trying to model a stack, this
automatically eliminates a large class of errors.

● Efficiency: Stacks can be slightly faster than
Vectors because they don’t need to support as
many operations. (More on that later in the
quarter.)

An Application: Balanced Parentheses

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

([)]

Balancing Parentheses

([)]
^

Balancing Parentheses

([)]
^

(

Balancing Parentheses

([)]
 ^

(

Balancing Parentheses

([)]
 ^

(

[

Balancing Parentheses

([)]
 ^

(

[

Balancing Parentheses

([)]
 ^

(

[

Oops! Wrong type
of parenthesis

here.

Balancing Parentheses

((

Balancing Parentheses

((
^

Balancing Parentheses

((
^

(

Balancing Parentheses

((
 ^

(

Balancing Parentheses

((
 ^

(

(

Balancing Parentheses

((

(

(

Balancing Parentheses

((

(

(

Oops! We never
matched this.

Balancing Parentheses

)

Balancing Parentheses

)
^

Balancing Parentheses

)
^

Oops! There’s
nothing on the
stack to match.

Our Algorithm

● For each character:
● If it’s an open parenthesis or brace, push it

onto the stack.
● If it’s a close parenthesis or brace:

– If the stack is empty, report an error.
– If the character doesn’t pair with the character

on top of the stack, report an error.

● At the end, return whether the stack is
empty (nothing was left unmatched).

More Stack Applications

● Stacks show up all the time in parsing, recovering the
structure in a piece of text.
● Often used in natural language processing; take CS224N for

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures

appearing in natural language are perfectly modeled by
operations on stacks; come talk to me after class if you’re
curious!

● They’re also used as building blocks in larger algorithms
for doing things like
● making sure a city’s road networks are navigable (finding

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem – stay tuned!

Time-Out for Announcements!

Assignment 2

● Assignment 1 was due today a 1:00PM.
● Need more time? Use one late day to extend the

deadline by 24 hours or two to extend it by 48 hours.
● Assignment 2 (Fun With Collections) goes out

today. It’s due next Friday at 1:00PM.
● Use collections to learn what language a text is written

in – and expand your mind about the world of human
language!

● Explore the impact of sea level rise on coastal regions!
● Have questions?

● Stop by the LaIR! Or ask on EdStem! Or email your
section leader!

Assignment 2

● This assignment contains a series of short-answer
ethics questions designed to get you thinking about
the social impact of computing.

● It’s critical to think about the effect your software has
on others, especially given the scale of modern
software systems.

● These will form a part of your grade on the
assignment separately from your functionality and
style scores.

● If you’d like to discuss ethics in technology more, feel
free to stop by or call into my “Chat About Anything”
hours today from 3PM – 5PM in Durand 317.

Discussion Sections

● Discussion sections have started! You
should have received an email with your
section time and section leader’s name.

● Don’t have a section? You can sign up for
any open section by visiting

https://cs198.stanford.edu/

logging in via “CS106 Sections Login,”
and picking a section of your choice.

https://cs198.stanford.edu/

Upcoming Career Fair
The Computer Forum Career Fair will be held Wednesday, January 25, in-person. Sign-ups
are now open! Stanford students only; student IDs required at check-in.

Date: Wednesday, January 25
Time: 11:00am - 4:00pm
Location: Arrillaga Center for Sports and Recreation, Basketball Courts [Enter through the
doors that lead directly to the courts, not through the main ACSR entrance]

Register via Handshake. Career Fair Plus link.

We will do in-person scheduled only sessions for the first three hours (11am - 2pm) and open
to all for the last two hours (2pm - 4pm). There is an enforced 10 minute buffer between
each session you are able to sign up for to allow for you to find the company/recruiter.

Candidate Checklist, How to Book Meetings.

Best Practices:

 • Be courteous of employers and other students. Only sign up for what you will attend.

 • Only sign up for one session per company

 • Continuously check back to see newly added schedules.

Stanford Computer Forum policies regarding no-shows: if you do not show up for a session
you signed up for, your participation in future Computer Forum events may be revoked. By
signing up and not showing up, you are taking away a spot from another student.

https://app.joinhandshake.com/edu/events/1213297
https://cfplus.page.link/eahe
https://help.careerfairplus.com/en/articles/4037918-candidate-checklist
https://help.careerfairplus.com/en/articles/4477545-candidates-booking-meetings-on-the-web

lecture.pop();

Queue

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42 271

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271 314

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

271 314

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

314

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'b' 'c'

'a'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'b' 'c'

'a'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'b' 'c'

'a'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'c'

'a' 'b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'c'

'a' 'b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'c'

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

'c''b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

'c''b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

'c''b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a'

'c'

'b'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b'

'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b'

'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b'

'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

An Application: Looper

Loopers

● A looper is a device that records sound
or music, then plays it back over and
over again (in a loop).

● These things are way too much fun,
especially if you’re not a very good
musician. 😃

● Let’s make a simple looper using a Queue.

Building our Looper

● Our looper will read
data files like the one
shown to the left.

● Each line consists of
the name of a sound
file to play, along with
how many milliseconds
to play that sound for.

● We’ll store each line
using the SoundClip
type, which is defined
in our C++ file.

G2.wav 690
G2.wav 230
Bb2.wav 230
G2.wav 460
G2.wav 460
G2.wav 460
G2.wav 230
Bb2.wav 230
G2.wav 230
F2.wav 460

Building our Looper

Building our Looper

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

🎶

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1Clip 2 Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2

Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2

Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1

Clip 2

Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

🎶

Building our Looper

Clip 1

Clip 2

Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2

Clip 3

Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2

Clip 3

Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2

Clip 3

Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

🎶

Building our Looper

Clip 1 Clip 2

Clip 3

Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Building our Looper

Clip 1 Clip 2 Clip 3Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Enjoying Our Looper

Feeling musical? Want to
contribute a loop for the
next iteration of CS106B?

Send me your .loop file and
we’ll add it to our collection!

Changing our Looper

Changing our Looper

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

What are you going to hear when we
use this version of the looper?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5
🎶

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5
🎶

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

Clip 1

Clip 1Clip 2

Clip 1Clip 3

Clip 4

Clip 5

Your Action Items

● Read Chapter 5.2 and 5.3.
● These sections cover more about the Stack

and Queue type, and they’re great resources
to check out.

● Start Assignment 2.
● To follow our suggested timetable, start

working on Rosetta Stone and make good
progress on it by Monday.

Next Time

● Thinking Recursively
● More elaborate recursive functions.

● Recursive Graphics
● Drawing intricate and beautiful figures with

very little code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228

